
The purpose of this note is to further generalize the smoothness framework by Rough-
garden [7], in order to provide a unified proof for many existing price-of-anarchy results.

1 Bounds on the Price of Anarchy

A strategic game is a triple (N, (Si)i∈N , (hi)i∈N ), where N is the set of players, Si is the set of
(pure) strategies, hi : S → R is the payoff function of player i, and S denotes the Cartesian product
S = ×i∈N Si.
We assume that the quality of strategy profiles—the outcomes of a game—can be measured by

a single non-negative quantity. We call a map Ψ : S → R≥0 social welfare function. The price of
anarchy is the worst-case ratio between the social welfare of an equilibrium and that of a maximum-
payoff strategy profile. Of course, all definitions can be easily restated for cost-minimization games
where each player seeks to minimize its cost ci instead of maximizing its payoff hi. In this case, Ψ
is called the social cost function. Obviously, the price of anarchy is always at most 1 for payoff-
maximization games and at least 1 for cost-minimization games.
Strategy profiles are sometimes a verbose way of capturing a game’s state and include levels of

detail unneeded or even cumbersome for the analysis of game properties. Therefore, our framework
allows for partitioning the set of strategy profiles S into more convenient equivalence classes. We
will call such an equivalence class allocation and require that the set of allocations A is granular
enough to separate equilibrium profiles from non-equilibrium profiles (we do not make any other
a priori assertions). When unambiguous, we use equivalence classes in the same way as strategy
profiles.

1.1 The Smoothness Framework

The core of the smoothness framework consists of decoupling the sum of the social welfare function
plus a variational inequality, where the latter completely comprises all equilibrium properties needed
for an upper bound.

Definition 1.1. Let P be a set of probability measures on the set of allocations A. We say that a
function ∆ : A×A→ R is a separator for P if there is some optimal (pure) allocation y such that
for every P ∈ P it holds that EX∼P [∆(X, y)] ≥ 0.

Definition 1.2. Let λ ≥ 0, µ < 1, and ∆ : A× A→ R. A payoff-maximization game is (λ, µ,∆)-
smooth if there is some optimal allocation y ∈ A such that for every allocation x ∈ A,

Ψ(x)−∆(x, y) ≥ µ ·Ψ(x) + λ ·Ψ(y) .

Likewise, a cost-minimization game is (λ, µ,∆)-smooth if there is some y ∈ A such that for all
x ∈ A,

Ψ(x) + ∆(x, y) ≤ µ ·Ψ(x) + λ ·Ψ(y) .

Clearly, if a payoff-maximization game is (λ, µ,∆)-smooth and ∆ is a separator for a certain set
of equilibria (such as pure Nash, mixed Nash, correlated, etc.), then every equilibrium P in that set
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has expected social welfare at least λ/(1− µ) times that of a (pure) optimal allocation y. In detail,
using the linearity of expectation,

EX∼P

[
Ψ(X)

]
≥ EX∼P

[
Ψ(X)−∆(X, y)

]
≥ EX∼P

[
µ ·Ψ(X) + λ ·Ψ(y)

]
= µ · EX∼P

[
Ψ(X)

]
+ λ ·Ψ(y) ,

(1.1)

where rearranging terms yields the claimed bound. It is immediate how this calculation can be
mimicked for cost-minimization games.

1.2 ∆-Separation for Specific Classes of Games

Looking at (1.1) shows that the generality of bounds derived via the smoothness framework hinges
on the separation provided by ∆; i.e., a bound carries over to the most general solution concept for
which ∆ is a separator. In this section, we define separators ∆ for several natural classes of games.

1.2.1 Finite Number of Players

If the number of players is finite, a straightforward and general way to define a separator ∆ is to
make use of the Nash conditions.

Lemma 1.3. Suppose N is finite. Let A = S and define ∆(~x, ~y) :=
∑

i∈N
(
hi(~x) − hi(~x−i, ~yi)

)
.

Then, ∆ is a separator for coarse correlated equilibria.

Proof. For every coarse correlated equilibrium P and any (pure) allocation ~x we have

E ~X∼P [∆( ~X, ~y)] =
∑
i∈N

(
E ~X∼P [hi(~x)]− E ~X∼P [hi(~x

−i, ~yi)]
)
≥ 0 . ut

1.2.2 Finite Number of Players, Convex Strategy Sets

If the number of players is finite, the strategy sets Si are convex subsets of some Euclidean space
Rmi , and player payoff functions are continuously differentiable with a bounded derivative (i.e., in
C1(S)), we can define a separator ∆ using the first-order necessary conditions for Nash equilibria.
In detail, if ~x ∈ S is a Nash equilibrium, then it must satisfy the following variational inequalities,

∀i ∈ N : ∀~yi ∈ Si : 〈∇ihi(~x), ~xi − ~yi〉 ≥ 0 . (1.2)

Here, ∇ihi := (∂hi/∂x
i
1, . . . , ∂hi/∂x

i
mi

) denotes the gradient of hi with respect to ~xi. Otherwise,
due to continuity of the hi, there would be some ε > 0, a player i, and a strategy ~yi so that player
i could improve by playing (1− ε) · ~xi + ε · ~yi instead.
We say a game is concave if all ~xi 7→ hi(~x

−i, ~xi) are concave functions. For concave games
condition (1.2) is not only necessary but also sufficient, since it holds for all i, ~x, and ~y that
hi(~x) − hi(~x

−i, ~yi) ≥ 〈∇ihi(~x), ~xi − ~yi〉. Hence, a separator based on the first-order necessary
condition for Nash equilibria can give a “sharper” separator than Lemma 1.3, potentially leading to
a better price-of-anarchy bound.
We first show that the characterization by variational inequalities can be generalized to correlated

equilibria, using ideas by Neyman [4]. Afterwards, we give the corresponding separator based on
(1.2). It turns out that this separator does not work for coarse correlated equilibria.
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Lemma 1.4. Suppose N is finite. For every player i, every strategy profile ~x ∈ S, and every
strategy ~yi ∈ Si, define

∆i(~x, ~y
i) := 〈∇ihi(~x), ~xi − ~yi〉 .

Let P be a probability measure on the set of pure strategy profiles. If P is a correlated equilibrium then
it holds for every player i and every measurable function f : Si → Si that E ~X∼P [∆i(~x, f( ~Xi))] ≥ 0.
If the game is concave, this condition is also sufficient.

Proof. We start by proving necessity (“⇒”). Let P be a correlated equilibrium, and fix a player i and
a measurable function f : Si → Si. By way of contradiction, suppose E ~X∼P [∆i( ~X, f( ~Xi))] < 0. For
any ~x ∈ S and any ε ∈ [0, 1], we define the abbreviating notation ~x� ε := (~x−i, (1− ε) ·~xi+ ε ·f(~xi)).
Note that

lim
ε↘0

hi(~x)− hi(~x � ε)
ε

= ∆i(~x, f(~xi)) .

Moreover, the fraction in the limit is bounded (independent of ~x ∈ S) by a constant function, which
is trivially P -integrable. Thus, by the dominated convergence theorem,

lim
ε↘0

∫
hi(~x)− hi(~x � ε)

ε
dP (~x) =

∫
∆i(~x, f(~xi)) dP (~x) = E ~X∼P [∆i( ~X, f( ~Xi))] < 0 .

Hence there exists ε > 0 so that

E ~X∼P [hi( ~X)] =

∫
hi(~x) dP (~x) <

∫
hi(~x � ε) dP (~x) = E ~X∼P [hi( ~X � ε)] ,

in contradiction to the assumption that P is a correlated equilibrium.
We now show sufficiency (“⇐”) in concave games. In particular, such a game satisfies for every

strategy profile ~x ∈ S, every player i, and every measurable function f : Si → Si that hi(~x) −
hi(~x

−i, f(~xi)) ≥ ∆i(~x, f(~xi)). Hence,

E ~X∼P [hi( ~X)− hi( ~X−i, f( ~Xi))] ≥ E ~X∼P [∆i( ~X, f( ~Xi))] ≥ 0 ,

which shows that P is a correlated equilibrium. ut

Corollary 1.5. Suppose N is finite. Let A = S and define ∆(~x, ~y) :=
∑

i∈N 〈∇ihi(~x), ~xi − ~yi〉.
Then, ∆ is a separator for correlated equilibria.

Remark 1.6. Neither Lemma 1.4 nor Corollary 1.5 generalize to coarse correlated equilibria. More-
over, the price of anarchy in games with convex strategy sets is generally strictly worse for coarse
correlated equilibria than for correlated equilibria.
We give an example in the following. Consider the cost-minimization game defined by N = {1, 2},

S1 = S2 = [0, 1], and c1(~x) = c2(~x) = d(~x) + ε, where d(~x) := (x1 − x2)2 and ε > 0. Note that the
game is an identical-interest game and has concave payoff/convex cost functions. The sole purpose
of ε is to ensure that the optimum has strictly positive social cost. Let P be a randomized strategy
profile that chooses (0, α) and (1, 1− α) with equal probability, where α > 0.
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Note that

E ~X∼P [d( ~X)] = α2 ,

E ~X∼P [d(X1, y2)] = (y2 − 1
2)2 + 1

4 ,

E ~X∼P [d(y1, X2)] = (α− 1
2)2 + (y1 − 1

2)2 .

Hence, P is a coarse correlated equilibrium if α ≤ 1
4 ; its expected social cost is E ~X∼P [Ψ( ~X)] =

2α2 + 2ε. Now, fix ~y = (12 ,
1
2). Clearly, ~y is an optimal strategy profile. Note that the gradients of

h are

∇1h1(~x) =
∂h1(~x)

∂x1
= 2x2 − 2x1 and ∇1h1(~x) =

∂h2(~x)

∂x2
= 2x1 − 2x2 ,

so we have E ~X∼P [∇1h1( ~X)·(X1−y1)] = −2α and E ~X∼P [∇2h2( ~X)·(X2−y2)] = 2α−4α2. This shows
that neither Lemma 1.4 nor Corollary 1.5 generalizes to coarse correlated equilibria. Moreover,

∆(~x, ~y) = −2(x1 − x2) · [(x1 − y1)− (x2 − y2)]
= −2(x1 − x2)2 + 2(x1 − x2)(y1 − y2) = −Ψ(~x) + 2ε = −Ψ(~x) + Ψ(~y) ,

where the last two equalities hold due to optimality of ~y. Consequently, the game is (1, 0,∆)-smooth,
i.e., has a correlated price of anarchy of 1.

1.2.3 Anonymous Nonatomic Games with Finite Strategies

Suppose N is some interval of the reals, and S :=
⋃
i∈N Si is finite. Any strategy profile ~x is a

Lebesgue-measurable function i 7→ ~xi. All players have the same payoff function that depends only
on the player’s own strategy and the total mass of the players playing each of the strategies.
In this setting, it will be convenient to define the set of allocations as the set of “mass distribution

vectors”. That is, two strategy profiles ~x, ~y are equivalent if

(λ({i : ~xi = s}))s∈S = (λ({i : ~yi = s}))s∈S ,

where λ is the Lebesgue measure. The set of allocations is thus RS≥0. Moreover, there is a continuous
function h : S ×A→ R, so that for each player i it holds that hi(~x) = h(~xi, [~x]), where [~x] denotes
the equivalence class (i.e., allocation) ~x is in. We say an allocation is a Wardrop equilibrium if the
payoff on each used strategy is greater or equal than the payoff on any other strategy.

Corollary 1.7. Suppose N is some interval of the reals. Let A = RS≥0 and define ∆(~x, ~y) :=∑
s∈S h(s, ~x) · (xs − ys). Then, ∆ separates Wardrop equilibria.

2 Examples

We now apply the smoothness framework to four concrete classes of games: atomic splittable
congestion games, atomic unsplittable congestion games, nonatomic congestion games, and resource
allocation games.
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2.1 Atomic Splittable Congestion Games

Atomic splittable congestion games are concave games, for which we will apply the ∆-separation
from Section 1.2.2. The smoothness framework boils down to identifying a suitable pair of param-
eters λ, µ that satisfy

y · `(x) + κ(x, y) · `′(x) ≤ λ · y · `(y) + µ · x · `(x) (2.1)

for every ` ∈ L and x, y ≥ 0, where κ(x, y) is defined as y2/4 if x ≥ y/2 and x(y − x) otherwise.

Proposition 2.1. Let n ∈ N and x, y ≥ 0. For all ~x, ~y ∈ Rn≥0 with
∑

i xi = x and
∑

i yi = y it
holds that

∑
i

(
yi · xi − x2i

)
≤ κ(x, y).

Theorem 2.2. Let L be a set of cost functions. If µ < 1, λ ∈ R satisfy (2.1) for all ` ∈ L and
x, y ≥ 0, and ∆ is the separator from Corollary 1.5, then any atomic splittable congestion game
with cost functions in L is (λ, µ,∆)-smooth.

Proof. Let ~x, ~y be pure strategy profiles. We have

∆(~x, ~y) =
∑
i∈N

∑
e∈E

`ie(~xe) · (yie − xie) .

Suppose now that ~x is a Nash equilibrium. Then,

Ψ(~x) + ∆(~x, ~y) =
∑
i∈[n]

∑
e∈E

(
xie · `e(xe) + yie · `ie(~xe)− xie · `ie(~xe)

)
=
∑
e∈E

(
ye · `(xe) + `′e(xe) ·

∑
i∈[n]

(
yie · xie − (xie)

2
))

≤
∑
e∈E

(
ye · `(xe) + κ(xe, ye) · `′(xe)

)
(2.2)

≤
∑
e∈E

(µ · xe · `e(xe) + λ · ye · `e(ye)) (2.3)

= µ ·Ψ(~x) + λ ·Ψ(~y) ,

where inequality (2.2) is due to Proposition 2.1, and inequality (2.3) is due to (2.1). ut

Corollary 2.3. Suppose the assertions of Theorem 2.2 hold. Then, the correlated price of anarchy
of atomic splittable congestion games with cost functions from L is at most λ

1−µ .

Remark 2.4. While the upper bound for atomic unsplittable congestion games (from Section 2.2)
also holds for atomic splittable games, we conjecture that the exact value is strictly less.

2.2 Atomic Unsplittable Congestion Games

For atomic unsplittable congestion games, we can apply the ∆-separation from Section 1.2.1. The
smoothness framework boils down to identifying a suitable pair of parameters λ, µ that satisfy

y · `(x+ 1) ≤ µ · x · `(x) + λ · y · `(y) (2.4)

for every ` ∈ L and x, y ≥ 0 (see also [2, Theorem 1], [1, Theorem 1], and [7, Proposition 3.2]).
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Proposition 2.5. If µ < 1, λ ∈ R satisfies (2.4) for all ` ∈ L and x, y ≥ 0, and ∆ is the separator
from Lemma 1.3, then any atomic unsplittable congestion game with cost functions in L is (λ, µ,∆)-
smooth.

Proof. Let ~x be a Nash equilibrium, and ~y be a strategy profile. We have

Ψ(~x) + ∆(~x, ~y) =
∑
i∈N

ci(~x
−i, yi) ≤

∑
e∈E

ye · `e(xe + 1) ≤
∑
e∈E

[
µ · x · `e(x) + y · `e(y)

]
= µ ·Ψ(~x) + λ ·Ψ(~y) . ut

Corollary 2.6. Suppose the assertions of Proposition 2.5 hold. Then, the coarse-correlated price
of anarchy of atomic unsplittable congestion games with cost functions from L is at most λ

1−µ .

We remark that the smoothness framework can be applied in the same way to atomic unsplittable
congestion games with weighted players. Since this adaption is straightforward, it is omitted here.

2.3 Non-atomic Congestion Games

For non-atomic congestion games, we can apply the ∆-separation from Section 1.2.3. The smooth-
ness framework boils down to identifying a suitable parameter µ that satisfies

y · `(x) ≤ µ · x · `(x) + y · `(y) (2.5)

for every ` ∈ L and x, y ≥ 0 (see also [5, Section 3.3] and [3, Theorem 3.6]).

Proposition 2.7. If µ < 1 satisfies (2.5) for all ` ∈ L and x, y ≥ 0, and ∆ is the separator from
Corollary 1.7, then any non-atomic congestion game with cost functions in L is (1, µ,∆)-smooth.

Proof. Let ~x, ~y ∈ A be allocations. We have ∆(~x, ~y) =
∑

e∈E `e(xe) · (ye − xe). Suppose now that
~x is a Wardrop equilibrium. Then,

Ψ(~x) + ∆(~x, ~y) =
∑
e∈E

ye · `e(xe) ≤
∑
e∈E

[
µ · xe · `e(xe) + ye · `e(ye)

]
= µ ·Ψ(~x) + Ψ(~y) . ut

Corollary 2.8. Suppose the assertions of Proposition 2.7 hold. Then, the price of anarchy of
nonatomic congestion games with cost functions from L is at most 1

1−µ .

2.4 Resource-Allocation Games

There is a finite number of players, and the strategy of each player i ∈ N is a non-negative bid bi,
i.e., Si = R≥0. At strategy profile ~b, each player i gets the amount

xi =
bi∑
j∈N bj

· C (2.6)

of the shared resource. If ~b = ~0, then every player i gets xi = C
|N | . (Note the difference to

Roughgarden [6] in order to avoid case analyses in the following proofs.) The payoff of player i is
hi(~b) = Ui(xi) − bi, where Ui is concave, strictly increasing, and continuously differentiable. It is
obvious that ~0 cannot be a Nash equilibrium.
The set of allocations is A := {~x ∈ RN≥0 |

∑
i∈N xi = C}, i.e., two strategy profiles are equivalent

if they lead to the same resource allocation.
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Lemma 2.9. Given a resource-allocation game, define

∆(~x, ~y) :=
∑
i∈N

[
U ′i(xi) ·

(
1− xi

C

)
· (xi − yi)

]
.

Then, ∆ separates pure Nash equilibria.

Proof. Let ~b ∈ S be a pure Nash equilibrium, define ~x(~b) ∈ A as the allocation corresponding to
bid vector ~b and let ~y ∈ A be an arbitrary allocation. Define ~d ∈ S by

di := yi ·
∑

j bj

C
.

The gradients of h are

∇ihi(~b) = U ′i

(
xi(~b)

)
· ∂xi(

~b)

∂bi
− 1 = U ′i

(
xi(~b)

)
· C − xi(

~b)∑
j bj

− 1 .

Consequently,

0 ≤
∑
i∈N
∇ihi(~b) · (bi − di) =

∑
i∈N

U ′i

(
xi(~b)

)
· C − xi(

~b)∑
j bj

· (bi − di)

=
∑
i∈N

U ′i

(
xi(~b)

)
·

(
1− xi(~b)

C

)
·
(
xi(~b)− yi

)
.

Here, the inequality is due to the first-order necessary conditions for Nash equilibria (1.2), the
middle equality is due to

∑
j dj =

∑
j bj , and the last equality is due to xi(~b) = bi∑

j bi
· C and

yi = di∑
j bi
· C. ut

The smoothness framework boils down to identifying a suitable λ ∈ R that satisfies

U(x)− U ′(x) ·
(

1− x

C

)
(x− y) ≥ λ · U(y) (2.7)

for every non-negative concave function U and x, y ≥ 0. We can choose λ = 3
4 to obtain:

Proposition 2.10. If ∆ is the separator from Lemma 2.9, then any resource allocation game is
(34 , 0,∆)-smooth.

Proof. Let ~x be a Nash allocation, and ~y be any other allocation. We have

Ψ(~x)−∆(~x, ~y) =
∑
i∈N

[
Ui(xi)− U ′i(xi) ·

(
1− xi

C

)
(xi − yi)

]
≥
∑
i∈N

λ · Ui(yi) = λ ·Ψ(~y) ,

where the inequality is due to Roughgarden [6, Lemma 3.14]. ut

Corollary 2.11. The price of anarchy of resource-allocation games is at least 3
4 .
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