
CloudKeeper
Florian Schoppmann∗

January 27, 2016

This article introduces CloudKeeper: a domain-specific language and a corre-
sponding runtime system for data flows. While motivated by Lifecode’s needs of
analyzing the human genome at scale, CloudKeeper is entirely general-purpose
and abstracts away tasks like data transfer, serialization, scheduling, check-
pointing, and package/dependency management. For Lifecode this means, e.g.,
that without any source-code modifications, our genome-analysis data flow can
be run purely in-memory within a single JVM as well as in a distributed fashion
in the cloud.
CloudKeeper is superficially similar to academic workflow management sys-

tems like Taverna or Pegasus, though it targets software engineers instead of
users. The statically typed DSL piggybacks on existing IDE support for Java,
Scala, or Groovy – it also allows seamless integration of data-flow program-
ming into any JVM-based language. The runtime system is available as just
a library, and it is lightweight enough to be used as alternative to lower-level
parallelization concepts such as threads, Java executor services, actor systems,
futures/promises etc. CloudKeeper is highly modular and versatile: E.g., in-
termediate results can be kept as in-memory Java objects as well as in the file
system or in a cloud-storage service. Likewise, processing of individual tasks
can be as different as using an existing thread pool or by submitting a job to a
distributed resource manager like Grid Engine.
Besides explaining CloudKeeper’s design philosophy and architecture, this

article also introduces the sophisticated data-flow-execution and checkpointing
algorithms use by CloudKeeper, including formal correctness proofs.

1 Introduction
Write an introduction and present related work!

∗fschoppmann@lifecodehealth.com

1

mailto:fschoppmann@lifecodehealth.com

2 The Interpreter Component
The CloudKeeper interpreter component is responsible for traversing the runtime represen-
tation of a workflow (in the terminology of programming languages and compilers, this is
sometimes referred to as the optimized abstract-syntax tree) and for recursively starting in-
terpreters for submodules. It provides different kinds of module interpreters corresponding
to the different kinds of CloudKeeper modules, such as composite modules, loop modules,
or simple modules.
Most of the complexity of the interpreter component stems from parent modules. Simple

modules instead are atomic entities for the interpreter, as they consist of user-defined code
written in Java or some other programming language. Therefore, a simple-module inter-
preter simply passes the simple module on to the executor component, which is responsible
for executing user-defined code. An executor has a great degree of freedom in doing so: For
instance, it may invoke the user-defined code on a remote machine, make use of external
schedulers, etc. However, the details of executors are entirely hidden from a simple-module
interpreter and therefore do not need to be addressed in this section.

2.1 Formal Model of CloudKeeper Modules

In order to reason about the concepts used by the CloudKeeper interpreter component
as well as to prove correctness of the algorithms described in this section, we start by
introducing a formal model of what constitutes CloudKeeper modules. This is followed by
additional definitions needed later, as well as a concrete example.

Modules A CloudKeeper module is a 6-tuple M = (I,O, L, deps, S, C) consisting of the
following elements.

• A set I of in-ports. An in-port is a formal input parameter.

• A set O of out-ports. An out-port is a formal output parameter.

• A set L of in-port/out-port pairs each of which defines an I/O-port. If M is not a
loop module, then necessarily L = ∅.

• A function deps : I → 2O that maps each in-port i ∈ I to a subset of out-ports. If
o ∈ deps(i) we say that out-port o depends on in-port i. While it is necessary that
o ∈ deps(i) if the value passed for i is needed for computing the value of o, there is
no upper-bound constraint on deps(i). In other words, deps(i) = O is always valid.

• A set S of submodules, where everyN ∈ S is itself a moduleN = (IN , ON , LN , depsN , SN , CN).
If M is not a parent module, then necessarily S = ∅.

• A set C of connections. Each connection c ∈ C is an ordered pair of ports in the
union of I, O, and all in- and out-ports of (direct) submodules of M . When M is
not a parent module, then necessarily C = ∅.

2

The set C can be partitioned into the set of parent-in-to-child-in connections C↑, the
set of sibling connections C→, the set of child-out-to-parent-out connections C↓, and
the set of short-circuit connections C→. Specifically, let c = (p, q) ∈ C. Then:

i) c ∈ C↑ if p ∈ I and ∃N ∈ S : q ∈ IN

ii) c ∈ C↓ if ∃N ∈ S : p ∈ ON and q ∈ O
iii) c ∈ C→ if ∃N,P ∈ S : p ∈ ON and q ∈ IP

iv) c ∈ C→ if p ∈ I and q ∈ O

Graphs A directed graph G = (V,E) consists of a set of vertices V and a set of edges
E ⊆ V 2. A vertex v ∈ V is called a source vertex is it has no incoming edges, that is, there
is no w ∈ V with (w, v) ∈ E. Likewise, v is called a sink vertex if it has no outgoing edges,
that is, there is no w ∈ V with (v, w) ∈ E. A path of length n ≥ 0 is a sequence of vertices
(v0, . . . , vn) so that for every i = 1, . . . , n, it holds that (vi−1, vi) ∈ E. The path is called
maximal if v0 is a source vertex and vn is a sink vertex.
Given a vertex v ∈ V , we say that another w ∈ V is reachable from v if there is a path

from v to w. Corresponding to the previous definition of a path, the reachable relation is
reflexive; that is, every vertex is reachable from itself.

Dependency Graphs Let M = (I,O, L, deps, S, C) be a module. Define V := S ∪ I ∪
O ∪ (

⋃
N∈S IN) as the set of all submodules, all in-port, all out-ports, and all submodules’

in-ports. The dependency graph of M is then defined as the directed graph G = (V,E),
where the edge set E contains (v, w) if and only if one of the following (mutually exclusive)
conditions holds:

i) (v, w) is a parent-in-to-child-in or a short-circuit connection. Formally, (v, w) ∈
C↑ ∪ C→.

ii) v is the in-port of some submodule, and this submodule has an out-port that depends
on v and that has a connection to w. Formally, ∃N ∈ S : v ∈ IN and ∃o ∈ depsN (v) :
(o, w) ∈ C→ ∪ C↓.

iii) v is a submodule, w is an out-port or a submodule’s in-port, and v has an out-port
that has a connection to w. Formally, ∃N ∈ S : v = N and ∃o ∈ ON : (o, w) ∈
C→ ∪ C↓.

Let R :=
⋃

N∈S ON be the set of all submodules’ out-ports. We define outports(v, w) :
E → 2R as the set of all out-ports that witness the connection between v and w in the
dependency graph (in case of conditions (ii) and (iii)). Formally,

outports(v, w) :=

∅ if v ∈ I
{o ∈ depsN (v) | (o, w) ∈ C→ ∪ C↓} if v ∈ IN for some N ∈ S
{o ∈ ON | (o, w) ∈ C→ ∪ C↓} if v = N ∈ S

3

In the remainder of this section, we will only be interested in the pruned dependency
graph with respect to a set of requested out-ports O∗ ⊆ O. The pruned graph only contains
those edges from which O∗ is reachable. That is, all vertices that did not have a path to
O∗ become isolated vertices in the pruned graph.

M P

N

Q

f

g

h

l

m

p

q

r
k

s

a

b

c

d

e

i

j

n

o

(a) Parent module with three submodules

M

N

P

Q

q

r
k

s

a

b

c

d

e

i

j

n

o

(b) Corresponding dependency graph

Figure 1: Example parent module and its dependency graph

Example 2.1. Let M = (I,O, L, deps, S, C) be the CloudKeeper parent module shown in
Figure 1a. The following list illustrates the previous definitions:

• Set of in-ports I = {a, b, c}, set of out-ports O = {q, r, s}, set of in-port/out-port
pairs L = ∅

• SinceM is a parent module, function deps could be computed from the other elements
in M . There is some freedom here: Strictly speaking, computing a value for out-port
q requires only a value for in-port a. That is, q ∈ deps(a) needs to hold necessarily,

4

but it is optional that q ∈ deps(b) or q ∈ deps(c). We will see later that keeping sets
deps minmal is most efficient, but it requires more preprocessing.
The dashed lines indicate functions depsN , depsP and depsQ. For instance, depsN (d) =
{f, h}, depsN (e) = {g, h}, depsP (i) = {l}, etc.

• Set of submodules S = {N,P,Q}

• Set of parent-in-to-child-in connections C↑ = {(a, i), (a, d), (b, e), (c, o)}

• Set of sibling connections C→ = {(f, j), (g, k), (h, n)}

• Set of child-out-to-parent-out connections C↓ = {(l, q), (m, r)}, (p, s)}

• Set of short-circuit connections C→ = ∅

The corresponding dependency graph is shown in Figure 1b. Witnesses between dependency-
graph vertices are, e.g., outports(a, i) = ∅, outports(d, j) = {f}, outports(N, j) = {f}. ♦

2.2 The Basic Interpreter Protocol

The CloudKeeper interpreter component provides module interpreters for the different
kinds of modules, such as composite, loop, or simple modules. Despite idiosyncrasies that
will be explained in this and later sections, all module interpreters adhere to the same
basic protocol: In particular, module interpreters are always invoked asynchronously, and
they communicate with the entity invoking them through a very simple message interface.
Specifically, a module-interpreter invocation:

• Receives in-port-has-value messages from its invoker whenever one of its in-ports
receives a value.

• Sends out-port-has-value messages to its invoker whenever it has computed the value
of an out-port.

• Receives a message during initialization that consists of two sets I∗ and O∗, where
I∗ contains the in-ports for which in-port-has-value messages will be received, and
O∗ contains the out-ports for that out-port-has-value messages have to be sent.

Whenever unambiguous or irrelevant, we will simply write module interpreter instead of
module-interpreter invocation in the following.
CloudKeeper module interpreters do not differentiate between starting and resuming.

Instead, when a module interpretation is started, it is always assumed that ports may
have previously computed values. For efficiency, as many as possible of these values should
be reused. Yet, not all values can always be salvaged, because consistency requires that
recomputing the value of a port also triggers reevaluation of all downstream ports.

5

2.3 Parent-Module Interpreters

The central piece of the interpreter component is the parent-module interpreter. It traverses
a single parent module, such as a composite or a loop module, and is responsible for
recursively starting interpreters for its submodules.

Consistent Checkpoints When a parent-module interpreter starts, it uses the sets
I∗ and O∗ to compute a set of vertices A in the dependency graph that constitute a
consistent checkpoint. Only then the traversal of the module will be started/resumed from
this checkpoint. Specifically, consistent checkpoints used by CloudKeeper are characterized
by the following properties:

i) Each vertex in A either represents a port that has a value or it represents a submodule.

ii) Resuming interpretation from all vertices in A and from all in-port vertices in I∗ (once
they receive a value) eventually leads to the computation of all required out-ports
O∗. Formally, every maximal path ending in O∗ contains a vertex from A ∪ I∗.

iii) No port will receive a new value more than once. Formally, every path that ends in
O∗ contains at most one vertex from A ∪ I∗.

iv) The number of reused values is maximal under the given constraints. Formally, the
set of all vertices reachable from any other set B satisfying the previous constraints
is a superset of the set of all vertices reachable from A.

The following Definition 2.2 formalizes and summarizes properties (i)–(iii). It will be
established in the next Section 2.4 that the algorithm used by CloudKeeper even computes
optimal consistent checkpoints in the sense of property (iv).

Definition 2.2. Let M = (I,O, L, deps, S, C) be a parent module, I∗ ⊆ I be the set of
recomputed in-ports, O∗ ⊆ O be the set of requested out-ports, and let G = (V,E) be the
pruned dependency graph. Let H ⊆ V \S be the set of ports that already have a value. A
consistent checkpoint A ⊆ H ∪S \ I∗ is a set of vertices so that every maximal path ending
in O∗ contains exactly one vertex from A ∪ I∗. ♦

Starting module interpreters Once a consistent checkpoint A has been computed, the
parent-module interpreter proceeds as follows:

• It transmits the values from all in-ports contained in A to all connection targets from
which O∗ is reachable,

• it invokes a child interpreter for every submodule that has an in-port contained in A,

• it invokes a child interpreter for every submodule contained in A that does not have
any in-ports, and

6

• it sends out-port-has-value messages to its invoker for all out-ports contained in A.

As discussed above, for each child-interpreter invocation the set of recomputed in-ports
and the set of requested out-ports is needed. These two sets can be inferred from the
consistent checkpoint A and the pruned dependency graph G = (V,E). When invoking a
child interpreter for submodule N ∈ S:

• The set of recomputed in-ports are those vertices in IN that are reachable from A (as
they will receive a value later), but not itself in A (as those already have a value).

• The set of requested out-ports are those vertices in ON that are also in

W :=
⋃

(v,w)∈E
v reachable from A∪I∗

outports(v, w) . (2.3)

Finishing a parent-module interpretation After every transmission of a value, one
of the following actions takes place:

• When a submodule in-port receives a value, the child interpreter is invoked if it has
not been invoked before. An in-port-has-value message is sent to the child interpreter.

• When an out-port receives a value, an out-port-has-value message is sent to the
invoker of the current interpreter.

Whenever the parent-module interpreter receives an out-port-has-value message from
one of its child interpreters, it transmits the value from that submodule’s out-port to all
connection targets from which O∗ is reachable. This asynchronous sequence of events
continues until all requested out-ports have a value.

2.4 Computing Consistent Checkpoints

While the previous section gave a definition for (and used) consistent checkpoints, we
still need to verify that the definition is sound – that is, consistent checkpoints really
exist – and that they can be computed efficiently. Both aspects are addressed by Algo-
rithm ComputeResumeState. Its basic idea is to perform a modified breadth-first-search in
order to classify all vertices of the dependency graph into one of three categories:

Ready These vertices are exactly those contained in the consistent checkpoint. That is,
these vertices do not need further input, and interpretation can resume immediately
from these vertices. It is guaranteed that they will never receive a new value while
the current module is interpreted.

Recompute These are the vertices that are reachable from I∗ or a “Ready” vertex. They
are guaranteed to receive a new value while the current module is interpreted.

7

Irrelevant These are all other vertices, which are not needed during the current module
interpretation. It is guaranteed that they will not receive a new value while the
current module is interpreted.

The algorithm also computes the set W from (2.3), which contains all submodules’ out-
ports that witness connections between ready or recompute vertices to another vertex with
state recompute. As stated previously, these are needed for recursive invocations of sub-
module interpreters.

The Formal Algorithm Apart from the inputs mentioned before, Algorithm ComputeResumeState
also takes as input the kind of queue to be used; that is, a data structure with the following
operations:

enqueue(x) Adds an element x to the queue.

dequeue Returns an element x from the queue, provided that dequeue has returned x
fewer times than enqueue(x) has been called.

isEmpty Returns whether the queue is empty.

contains(x) Returns whether x is contained in the queue. This must be true if after the
last enqueue(x), no dequeue operation has returned x. And this must return false
if dequeue has returned x at least as often as enqueue(x) has been called. Given a
queue Q, we will use the shorthand notation “x ∈ Q”.

Note that this specification can be met by different kinds of queues: For instance, one kind
of queue may contain the same element more than once, while another could employ set
semantics. Likewise, the order in which elements are dequeued could just be the insertion
order, or it could be determined by (implicit) element priorities.

Algorithm ComputeResumeState(M,H, I∗, O∗)
Input: parent module M = (I,O, L, deps, S, C),

set H ⊆ V \ S of ports that already have a value,
set I∗ ⊆ I of recomputed in-ports,
non-empty set O∗ ⊆ O of requested out-ports,
kind of queue

Output: map state : V → {irrelevant, ready, recompute},
set W =

⋃
(v,w)∈E|state[v] 6=irrelevant outports(v, w) ⊆ R

Require: for all i ∈ I with deps(i) ∩O∗ 6= ∅ : i ∈ H ∪ I∗

1: Construct dependency graph G = (V,E), pruned w.r.t. O∗
2: Q← new instance of the given kind of queue
3: for v ∈ V \ (I∗ ∪O∗) do
4: state[v]← irrelevant
5: for i ∈ I∗ do

8

6: state[i]← recompute
7: enqueue i to Q
8: for o ∈ O∗ do
9: state[o]← ready

10: enqueue o to Q
11: W ← ∅
12: while Q not empty do
13: v ← dequeue from Q
14: if state[v] = ready and v 6∈ H ∪ S then
15: state[v]← recompute
16: if state[v] = recompute then
17: for w ∈ V with (w, v) ∈ E do
18: if state[w] = irrelevant then
19: state[w]← ready
20: enqueue w to Q
21: for w ∈ V with (v, w) ∈ E do
22: W ←W ∪ outports(v, w)
23: if state[w] 6= recompute then
24: state[w]← recompute
25: enqueue w to Q

Example 2.4. Figure 2 shows the result of running Algorithm ComputeResumeState on
the module from Example 2.1. The set H consists of all vertices with a gray background.
The set I∗ of recomputed in-ports is {a}, and the set O∗ of requested out-ports is {r, s}.
Note that the pruned dependency graph only contains edges that are on a path to one of
the requested out-ports.
The result is indicated as follows: If a vertex v ∈ V is shown with a thick stroke, then

state[v] = ready, if it is shown with a dashed outline, then state[v] = recompute, and
otherwise state[v] = irrelevant. ♦

Termination and Runtime Computing the pruned dependency graph in line 1 can be
done using, e.g., a breadth-first-search starting from the vertices in O∗. The initialization
steps in lines 2 to 11 perform |V | plus constantly many assignments and at most |V |
enqueuing operations. In the following, we verify termination and running time of the
while-loop that starts in line 12. Every vertex v ∈ V can be added to the queue only if
state[v] = ready (lines 10 and 20) or if state[v] = recompute (lines 7 and 25). Moreover,
each enqueuing operation is contingent on state[v] having been modified in the immediately
preceding line. Since the state of a vertex can only change from irrelevant to ready (lines 9
and 19) or from irrelevant or ready to recompute (lines 6 and 24), this implies that every
v ∈ V can be enqueued at most twice – in which case it would first be enqueued in state

9

M

N

P

Q

q

r
k

s

a

b

c

d

e

i

j

n

o

Figure 2: Result of running Algorithm ComputeResumeState

ready (line 10 or 20) and then again during some later iteration in state recompute (line 25).
Since one vertex is dequeued during every iteration of the while-loop (line 13), the queue
will necessarily become empty during some iteration, at which point the algorithm will
terminate. Specifically, the previous observation guarantees that there will be at most 2|V |
iterations of the while-loop.

Correctness We need to verify that, upon termination of Algorithm ComputeResumeState,
the set A := {v ∈ V | state[v] = ready} is a consistent checkpoint. This will proceed in
a series of steps. First, we verify in Lemma 2.5 that A contains no “forbidden” vertices.
Then, we show in Lemmas 2.6 and 2.8 and Corollary 2.9 that every maximal path ending in
a required-out-port vertex contains exactly one vertex from A or exactly one recomputed-
in-port vertex, but not both.
We also need to verify that Algorithm ComputeResumeState correctly computes set

W (containing all submodules’ out-ports that must receive a new value). Lemma 2.10
establishes that W is indeed as defined in (2.3).

Lemma 2.5. Upon termination of algorithm ComputeResumeState, it holds for every v ∈
V with state[v] = ready that v ∈ H ∪ S \ I∗.

Proof. Let v ∈ V with state[v] = ready. Setting state[v] to ready can only have happened
in lines 9 or 19. In either case, v was enqueued to Q in the immediately succeeding
line. Since the algorithm terminated, v must have been dequeued in line 13 in some
subsequent iteration i of the while-loop. The if-condition in the following line 14 was not
satisfied, because otherwise state[v] would have been updated to recompute (and would
have remained recompute until the end of the algorithm). The first part of the if-condition,
i.e., state[v] = ready, was satisfied in iteration i, so it must have been the second part that
was not satisfied. That is, v ∈ H ∪ S. Moreover, v /∈ I∗ because otherwise state[v] would
have been set to recompute already in line 6. �

10

Lemma 2.6. Let (v0, . . . , vm) be a path in the dependency graph. Upon termination of
Algorithm ComputeResumeState, the following equivalence holds for every j ∈ {1, . . . ,m}:

state[vj−1] 6= irrelevant ⇐⇒ state[vj] = recompute .

Proof. Let n be the number of iterations of the while-loop before algorithm ComputeResumeState
terminates. Denote by Q(0) the set of vertices contained in queue Q before entering the
while-loop in line 12. Similarly, let state(0) be the value of state at this point in the algo-
rithm. For i = 1, . . . , n, denote by Q(i) and state(i) the contents of Q and state, respectively,
at the end of iteration i of the while-loop. Obviously, Q(0) = I∗ ∪O∗ and Q(n) = ∅.
We will show by induction over i = 0, 1, . . . , n that the following invariant holds before

and after each loop iteration.

For every path (v0, . . . , vm) in the dependency graph and every j = 1, . . . ,m,
the following implications hold:

i) state(i)[vj−1] 6= irrelevant and state(i)[vj] 6= recompute =⇒ vj−1 ∈ Q(i)

ii) state(i)[vj−1] = irrelevant and state(i)[vj] = recompute =⇒ vj ∈ Q(i)

If this invariant holds after iteration n, then this completes the proof because Q(n) = ∅.
We first verify the base case i = 0. Let (v0, . . . , vm) be a path and j ∈ {1, . . . ,m}. To

see (i), note that state(0)[vj−1] 6= irrelevant implies vj−1 ∈ I∗ ∪O∗. However, vj−1 is not a
sink vertex, so vj−1 /∈ O∗, but instead vj−1 ∈ I∗. Due to line 7, this implies vj−1 ∈ Q(0).
Implication (ii) holds vacuously because the assumption is never satisfied: To see this,
note that state(0)[vj] = recompute implies vj ∈ I∗, meaning that vj is a source vertex – a
contradiction.
Before continuing with the inductive step, we first need a small technical observation:

Claim 2.7. Let v ∈ V , i ∈ {1, . . . , n}, v /∈ Q(i−1), and v /∈ Q(i). Then state(i)[v] =
state(i−1)[v].

Proof (of Claim 2.7). Since v /∈ Q(i−1), it holds that v was not dequeued from Q in it-
eration i, and therefore line 15 cannot have modified state[v]. Moreover, since v was not
enqueued to Q in iteration i, lines 19 and 24 cannot have modified state[vj], either. In order
to see this, note that in each case the immediately following line would have enqueued v.
Consequently, state(i)[v] = state(i−1)[v]. �

Now suppose that the invariant holds for an arbitrary iteration i − 1 ∈ {0, 1, . . . }. We
show that the invariant also holds at the end of iteration i (which proves the inductive step
i− 1→ i). Let (v0, . . . , vm) be an arbitrary path, and let j ∈ {1, . . . ,m}.

i) By way of contradiction, assume that vj−1 /∈ Q(i). If vj−1 ∈ Q(i−1), then vj−1 was
dequeued in iteration i, and therefore state(i)[vj] = recompute due to line 24, because
(vj−1, vj) ∈ E. On the other hand, if vj−1 /∈ Q(i−1), then at least one of the following
holds because of the induction hypothesis (that is, because of the invariant after
iteration i− 1):

11

• state(i−1)[vj−1] = irrelevant
Since vj−1 /∈ Q(i) and vj−1 /∈ Q(i−1), Claim 2.7 implies that also state(i)[vj−1] =
irrelevant.
• state(i−1)[vj] = recompute
In this case, also state(i)[vj] = recompute because Algorithm ComputeResumeState
never changes the state of a vertex once it has been set to recompute.

Hence, there is a contradiction to the assumption of implication (i), as needed.

ii) By way of contradiction, assume that vj /∈ Q(i). If vj ∈ Q(i−1), then vj was dequeued
in iteration i. Therefore, either state(i)[vj] 6= recompute or state[vj−1] would have been
set to ready in line 19, and thus state(i)[vj−1] 6= irrelevant, because (vj−1, vj) ∈ E.
On the other hand, if vj /∈ Q(i−1), then at least one of the following holds because of
the induction hypothesis:
• state(i−1)[vj−1] 6= irrelevant

In this case, also state(i)[vj−1] 6= irrelevant because Algorithm ComputeResumeState
never changes the state of a vertex back to irrelevant.
• state(i−1)[vj] 6= recompute
Since vj /∈ Q(i) and vj /∈ Q(i−1), Claim 2.7 implies that also state(i)[vj−1] 6=
recompute.

Hence, there is a contradiction to the assumption of implication (ii), as needed. �

Lemma 2.8. Upon termination of Algorithm ComputeResumeState, it holds for every v ∈
V with state[v] = recompute that v is reachable from a vertex w with state[w] = ready or
w ∈ I∗.

Proof. Let v ∈ V with state[v] = recompute, and let v0 be a source vertex that v is reachable
from; that is, v0 ∈ I ∪S. (Note that such a vertex v0 always exists.) Since the “reachable”
relation is transitive, it is sufficient to show the claim for v0.
If state[v0] 6= recompute, then Lemma 2.6, together with a simple inductive argument,

guarantees existence of a vertex w with state[w] = ready such that v is reachable from w.
Therefore suppose state[v0] = recompute. One of the following must hold:

• v0 ∈ O∗ (if state[v0] was assigned in line 6),

• v0 /∈ H ∪ S (if assigned in line 15), or

• ∃w ∈ V with (w, v0) ∈ E (if assigned in line 24).

Of these three cases, only v0 /∈ H ∪ S is compatible with the previous observation that
v0 ∈ I ∪ S. By construction of the dependency graph, and since state[v0] 6= irrelevant,
some vertex in O∗ is reachable from v0, implying deps(v0) ∩ O∗ 6= ∅. The precondition of
Algorithm ComputeResumeState implies that v0 ∈ H ∪ I∗. Put together, we get v0 ∈ I∗.�

12

Corollary 2.9. Upon termination of Algorithm ComputeResumeState, every maximal path
ending in O∗ contains exactly one vertex v with state[v] = ready or v ∈ I∗.

Proof. Let (v0, . . . , vn) be a maximal path with vn ∈ O∗. Existence of a j ∈ {0, . . . , n}
with state[vj] = ready or with vj ∈ I∗ is established by Lemma 2.8 and the fact that for
all o ∈ O∗ it holds that state[o] 6= irrelevant.
In order to show uniqueness, note that Lemma 2.6 implies there is at most one j ∈
{0, . . . , n} with state[vj] = ready. In that case, vj /∈ I∗ because of Lemma 2.5. By con-
struction of the dependency graph, it moreover holds that v1, . . . , vn /∈ I∗. This completes
the proof. �

Lemma 2.10. Upon termination of Algorithm ComputeResumeState, let A := {v ∈ V |
state[v] = ready} be the computed checkpoint. It holds that

W =
⋃

(v,w)∈E
v reachable from A∪I∗

outports(v, w) .

Proof. Due to Lemmas 2.6 and 2.8, we know that a vertex v ∈ V is reachable from A ∪ I∗
if and only if state[v] 6= irrelevant.
We first show “⊆”. Let o ∈ W . Obviously, o was added to W in line 22, for some

v, w ∈ V with o ∈ outports(v, w). At the beginning of that while-loop iteration, v was
necessarily dequeued in line 13. This implies that state[v] 6= irrelevant at that time. Since
state[v] can never change back to irrelevant, it also means that state[v] 6= irrelevant after
Algorithm ComputeResumeState terminated.
In order to show “⊇”, let (v, w) ∈ E with state[v] 6= irrelevant, meaning that state[v]

was updated at least once either in line 6, 9, 19, or 24. In each case, the subsequent line
added v to the queue. Since Algorithm ComputeResumeState terminated, v was dequeued
later, implying that outports(v, w) ⊆W due to line 22. �

Optimality So far, we have verified that Algorithm ComputeResumeState correctly com-
putes a consistent checkpoint A. In the following, we show that A is moreover optimal
in the following sense: If B is any other consistent checkpoint, then the set of vertices
reachable from B is a superset of the set of vertices reachable from A.

Lemma 2.11. Let B be a consistent checkpoint. Upon termination of algorithm ComputeResumeState,
it holds for all v ∈ V with state[v] 6= irrelevant that v is reachable from B ∪ I∗.

Proof. Using the same notation as in the proof of Lemma 2.6, we show that the following
invariant holds before and after every iteration of the while-loop. For every v ∈ V :

i) state(i)[v] 6= irrelevant =⇒ v reachable from B ∪ I∗ and
ii) state(i)[v] = recompute =⇒ v /∈ B.

13

We first verify the base case i = 0 (that is, prove the invariant before the first iteration).
Let v ∈ V . To see (i), note that state(0)[v] 6= irrelevant implies v ∈ I∗ ∪ O∗. Since B
is a consistent checkpoint, all vertices in I∗ ∪ O∗ must be reachable from B ∪ I∗. To see
(ii), note that state(0)[v] = recompute implies v ∈ I∗. Again by definition of a consistent
checkpoint, we know I∗ ∩B = ∅.
For the inductive step i − 1 → i, it is sufficient to consider any arbitrary w with

state(i−1)[w] = irrelevant and state(i)[w] 6= irrelevant. Let v be the vertex dequeued in
line 13 of iteration i.
There are two cases. If the assignment to state[w] happened in line 19, then v is reachable

from B ∪ I∗ and v /∈ B, both by the induction hypothesis. Moreover, v /∈ I∗ because v is
not a source vertex. By way of contradiction, suppose now that w is not reachable from
B ∪ I∗. Then we can find a maximal path containing w and v that does not contain a
vertex from B ∪ I∗; a contradiction to the assumption that B is a consistent checkpoint.
This proves (i). Since state(i)[w] = ready, property (ii) holds vacuously.
If the assignment happened in line 24, then likewise w is reachable from B ∪ I∗, because

(v, w) ∈ E and v is reachable from B ∪ I∗ by the induction hypothesis. To see (ii), note
that since v is reachable from B ∪ I∗, it must hold that w /∈ B. Otherwise, there would be
a path through v and w that contains more than one vertex from B ∪ I∗. This completes
the proof. �

Implementation Set H is the set of all ports that already have a value. In practice, this
set is relatively expensive to compute because doing so may involve accessing secondary
storage (like the file system). It is therefore desirable to use H only lazily, in particular
because the only operation needed is “/∈” in line 14. It is additionally desirable to allow
processing more than one such operation at a single time. Hence, the operation should not
block, and the question is instead if one may asynchronously check v ∈ H and not dequeue
v while the result is unknown. This would be possible if the order of dequeuing in line 13
was arbitrary, and we can simply dequeue another vertex w 6= v while waiting for v. The
following Lemma 2.12 shows this is indeed the case.

Lemma 2.12. The output of Algorithm ComputeResumeState does not depend on the kind
of queue used.

Proof. Let M,H, I∗, O∗ be arbitrary valid arguments for Algorithm ComputeResumeState.
Define state(φ) as the output of Algorithm ComputeResumeState with the previous argu-
ments and using a queue of kind φ. Let A(φ) := {v ∈ V | state(φ)[v] = ready} and let
X(φ) := {v ∈ V | v reachable from A(φ) ∪ I∗}.
Lemma 2.11 shows that for any two φ, φ′, it holds that X(φ) ⊆ X(φ′). Consequently,

X(φ) is constant in φ. Let Y denote this constant. We will show that not just X(φ) is

14

constant in φ, but also state(φ) is constant in φ. To this end, define state′ as follows:

state′[v] :=

recompute if v ∈ I∗ or there is w ∈ Y with (w, v) ∈ E
ready if v ∈ Y otherwise
irrelevant otherwise.

Now let φ be an arbitrary kind of queue. We will show that state(φ) = state′. Let v ∈ V ;
there are three cases:

• Suppose state′[v] = recompute. It holds that v ∈ I∗ or there is a w ∈ V with w
reachable from A(φ) ∪ I∗ and (w, v) ∈ E. By Lemma 2.6, this implies state(φ)[v] =
recompute.

• Suppose state′[v] = ready. By definition of state′, it holds that v /∈ I∗ and that there
is no w ∈ X with (w, v) ∈ E. That is, there is no w ∈ V with (w, v) ∈ E such that
w is reachable from A(φ) ∪ I∗. However, v ∈ Y = X(φ), i.e., v is reachable from
A(φ) ∪ I∗. This implies v ∈ A(φ) ∪ I∗. Put together, v ∈ A(φ), which is equivalent
to state′[v] = ready.

• Suppose state′[v] = irrelevant. In this case, v /∈ Y , i.e., v is not reachable from
A(φ) ∪ I∗. By definition, v /∈ A(φ) implies state(φ)[v] 6= ready. Moreover, it follows
from Lemma 2.8 that state(φ)[v] 6= irrelevant. Hence, state(φ)[v] = irrelevant.

Since state(φ) = state′, and due to Lemma 2.10, the setW computed by Algorithm ComputeResumeState
is likewise independent of φ. This completes the proof. �

15

	Introduction
	The Interpreter Component
	Formal Model of CloudKeeper Modules
	The Basic Interpreter Protocol
	Parent-Module Interpreters
	Computing Consistent Checkpoints

